בפרק זה אירחנו את אלן ארזי, מהכותבים של TabStar (יחד עם עילם שפירא ופרופ. רועי רייכארט) - מודל דיפ לרנינג המיועד למידע טבלאי.
בניגוד לתמונה, קול וטקסט - במידע טבלאי מודלי דיפ לרנינג הם לא הגישה הרווחת.
האתגר הגדול בעולמות הטבלה היא חוסר האחידות, טבלאות יכולות לתאר מגוון רחב של נתונים בלי מכנה משותף ביניהם - ולכן קשה למצוא ״מודל בסיס״ כמו בעולמות התמונה.
בטאב סטאר, הכותבים לקחו גישה שמערכת מודלי שפה (ובפרט טרנספורמרים) והשתמשו בשמות העמודות ובתיאור הטקסטואלי של הקטגוריות בשביל לתת למודל קונטקסט.
השיטה מראה ביצועים עדיפים על XGBoost כאשר יש מגוון של עמודות טקסטואליות במשימות קלאסיפיקציה.
אלן סיפר לנו על האתגרים באיסוף מידע לאימון ועל הצפוי לנו בעתיד בעולמות המידע הטבלאי.
--------
33:31
--------
33:31
על הקשר בין דחיסה ללמידה עם פרופ. רביד זיו
רביד זיו, לשעבר מהמעבדה של יאן לקון, היום פרופסור בNYU וחוקר פורה בדיפ לרנינג ידבר איתנו על דחיסה ולמידה.
בעוד דחיסה מזכיר לחלקנו זיפ, או jpeg - רביד ירחיב על איך רשתות דוחסות מידע בצורה יעילה.
נדבר על שיטות כגון next token prediction שמסתבר שמאלצות מודלים ללמוד דחיסה יעילה יותר מאשר masking כמו בBERT.
נדבר על חשיבות האוגמנטציה בתהליך האימון - או יותר נכון, חוסר החשיבות כפי שנראה.
ונעמיק על הקשר שבין דחיסת מודלים, דחיסת אינפורמציה והמשימות אליהן רוצים לעשות אופטימיזציה
--------
56:00
--------
56:00
על אומנות ובינה מלאכותית גנרטיבית - עם מתי מריאנסקי
מתי מריאנסקי, מוביל קהילת עליית המכונות הפופולארית, אמן ומשתמש נלהב בAI ידבר איתנו על נסיונו.
נדבר על המגבלות והדפוסים שנראה שAI נופל אליהם, האם מודל בינה יוכל לייצר את סגנון הקוביזם החדש?
ונדבר על ההשלכות של פילטרי הבטיחות על איכות המודלים.
לסיום, נדון האם יש טעם ללמוד היום עיצוב גרפי, והאם התחום בדרך לאוטומציה מלאה.
--------
51:28
--------
51:28
איך מודלי שפה עובדים טוב גם לא באנגלית - עם גיא רוטמן, גונג
היום בעידן מודלי השפה הגדולים כשתרגום סימולטני מתאפשר בלייב, זה נראה כאילו מאז ומתמיד ChatGPT ידע לדבר עברית.
עד לא מזמן היתה צניחה משמעותית בביצועים של מודלי שפה על שפות שאינן אנגלית.
בפרק זה גיא רוטמן, חוקר אקדמי בתחום ובתעשייה ב gong.io ידבר איתנו על אתגרי העבר והווה באימון מודלי שפה רב שפתיים.
נדבר על טיפים עכשוויים להתמודדות עם שפות כגון עברית, ועל אתגרי הדאטא.
--------
49:27
--------
49:27
איך הגעתי למליוני חשיפות בלינקדין עם AI - עם מיכאל קיסילנקו
יוצא לנו הרבה לדבר על אייג׳נטים, על מודלי שפה, ועל איך הם עובדים.
בפרק זה אנחנו נדבר עם מיכאל קיסילנקו - היזם מאחורי GenDesk, שמגיע שיטתית למליוני חשיפות בלינקדין בעזרת שימוש בAI.
מיכאל פיתח מומחיות רבה, ולמד את האלגוריתם של לינקדין מכל הצדדים.
פרק מלא תובנות שאסור לפספס