איך מלמדים היום הנדסת תוכנה - עם אסף שפנייר מהמכללה להנדסה עזריאלי בירושלים
בעידן שבו כל יום מאיימים עלינו שעוד מעט לא יצטרכו מתכנתים כי AI יחליף את כולנו, האם צריך ללמוד הנדסת תוכנה?
ד״ר אסף שפנייר ראש התוכנית לתואר שני בבינה מלאכותית מהמכללה להנדסה - עזריאלי בירושלים, יספר מדוע מדובר ב Fake news.
נדבר על החוסרים שAI מתקשה למלא בעולמות הנדסת התוכנה, ועל התפקיד החדש של מהנדס תוכנה בעידן שאחרי ChatGPT.
לאסף יש מספר עצות לבוגרים טריים, איך נכון להתבלט בשוק שבו ״פרויקט גמר״ כבר לא מרשים אף אחד - כי תמיד יש את הספק אם הוא נכתב על ידי AI או אדם.
ואיך בכלל בודקים הבנה של יסודות תוכנה בסיסיים כאשר כלים כמו Cursor יכולים להשלים את החסר בצורה טובה יחסית.
קישור לפודקסט של אסף: מתכנתים מחדש את ההוראה
--------
34:15
--------
34:15
AI Coding - עם גילי נחום - AWS
כולם מדברים היום על קידוד עם AI, בין אם זה עם כלי עזר כמו co-pilot או cursor, השלמה אוטמטית. או כתיבה של תוכניות שלמות עם vibe coding עם כלים כמו lovable או base44.
בפרק זה נארח את גילי נחום, לענות על שאלות על עתיד עולם התוכנה והכלים האחרונים.
נדבר על שימוש נכון בMCP, על חלוקה של הכלים לדורות וההיררכיה שלהם.
ונתן עצות מה המקומות הנכונים לשלב כלים כמו claude code לעומת כלים אחריםץ
--------
37:48
--------
37:48
על למידה בהמשכים - Continual Learning - עם עידן משיח
אימון מודלים זה דבר מורכב, הכולל בחירה חכמה של גודל הבאצ׳ים, ובחירה נכונה של דאטא איכותי ונקי.
בפרק זה נדבר עם עידן משיח, סטודנט לתואר שני בתחום על אלטרנטיבה או השלמה ללמידה בבאצ׳ - למידה בהמשכים.
נדבר על האתגרים של ״שכחה״ catastrophic forgetting כשחושפים מודל לדאטא חדש.
עידן ישטח בפנינו את שלושת האלטרנטיבות ללמידה הדרגתית, הכוללים שינוי של מבנה הדגימה, עדכון המודל ושינויים בפונקציית האופטימיזציה.
נשווה בין למידה ישירה ללמידה בהמשכים ונמליץ על טיפים פרקטיים לכל מי שמאמן מודלים על דאטא גדול.
--------
41:39
--------
41:39
איך עושים מחקר ופיתוח בעולם ה-GenAI עם עוז ליבנה
AI מעולם לא היה זמין יותר, ולמרות זאת חברות רבות מתקשות במחקר ופיתוח מוצרים/פיצ'רים מבוססי GenAI. מה הן מפספסות? מדוע זה שונה כל כך מפיתוח תוכנה "קלאסי"?
בפרק זה אירחנו את עוז ליבנה, יועץ וארכיטקט GenAI, לשתף מנסיונו ולהסביר על שינוי הפרדיגמה העמוק הדרוש להצלחה במחקר ופיתוח GenAI, ועל ההבדלים המהותיים מפיתוח תוכנה קלאסי - ברמת החשיבה, התכנון, התמודדות עם אתגרים, צורת ההתקדמות, POCs, ומטריקות
--------
58:15
--------
58:15
על חוקי הסקייל של מודלי שפה עם ד״ר ג׳וני רוזנפלד מMIT
בפרק זה היה את הכבוד לארח את ג׳וני, מהכותבים המקוריים של מאמר הscaling laws ב2019 שסלל את הדרך למודלי השפה העצומים של ימינו.
חשבתם פעם איך לסם אלטמן היה את האומץ לשפוך מליונים על אימון GPT3 בתקווה שיהיה מודל טוב יותר מאשר מודל באלפי דולרים?
תגלית חוקי הסקיילינג (שלהם ג׳וני היה שותף) היתה המנוע העיקרי להבנה איך עובדת הכלכלה של אימון מודלי שפה.
נגענו במוטיבציה לכללים, ומדוע אנחנו יכולים לנבא ביצועים של מודל אף על פי שאיננו יודעים איך הוא עובד בדיוק.
דיברנו על ההבדל בין ההשפעה של החוקים על שלב האימון לעומת שלב הinference כפי שאנחנו רואים במודלי chain of thought.
והאם סקיילינג תלוי בארכיטרטורה של הטרנספורמרים אותה אנחנו מיישמים כיום? או שמדובר בתופעה כללית.
סיימנו בדיון על העתיד של התחום, וכיצד אפשר למדוד אוטונומיה של מודלי שפה בצורה דומה בעתיד כדי להבטיח שתהיה שליטה במודלים הבאים.